

BowTie Range Design Guide

Includes use as a wall-diaphragm anchorage in seismic upgrades

how when when the source of th

Contents

The BowTie range	3
Applications	4
BowTie Installation and Technical Specification	5
BowTie HD Installation and Technical Specification	6
Specification & Testing	7
Design Guidance	8
Design Example	11

The BowTie range

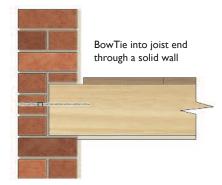
The Helifix BowTie connects masonry walls to internal timber floor or ceiling joists.There are two types of BowTie, the standard BowTie and the BowTie HD.

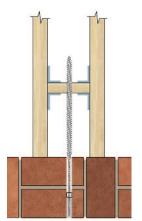
The standard BowTie is a helically shaped tie manufactured from stainless steel, grade 316, as standard. This tie is used when tying masonry to joist ends. Ties are available in two standard diameters, 8mm and 10mm, and in a variety of different lengths. Installation requires the use of an electric hammer drill and setting tool to drive one end of the tie into the end of the timber joist to produce a mechanical connection. Access to the joist is achieved by first drilling a small clearance hole through the masonry. EpoxyPlus resin is used to bond the tail of the tie to the masonry.A concealed installation is achieved by patching the entry hole with appropriate matching materials.

The BowTie HD is a larger tie and comprises a more conventional threaded profile. The tie is manufactured from stainless steel, grade 304 as standard. The thread is produced by cold rolling a 9mm round bar to leave a threaded rod of nominal 12mm diameter. It has a selfcutting tip at one end and a short section of a reduced diameter at the other to allow a fitting tool to be connected for installation. The intended use is tying masonry to joist sides. Installation involves drilling a clearance hole through the masonry before driving the BowTie HD through the first and subsequent joists, using a setting tool fitted to a drill set on rotary only, to create a mechanical connection within the timber. EpoxyPlus resin is used to bond the outer end of the tie to the masonry. A concealed installation is achieved by patching the entry hole with appropriate matching materials.

EpoxyPlus EX, a seismically-qualified, high-performance pure epoxy resin, is used to bond BowTies to masonry. Refer to the EpoxyPlus EX technical datasheet for full details, available online.

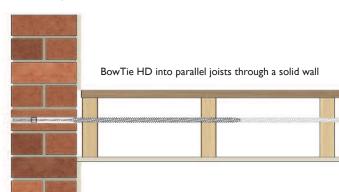
Applications

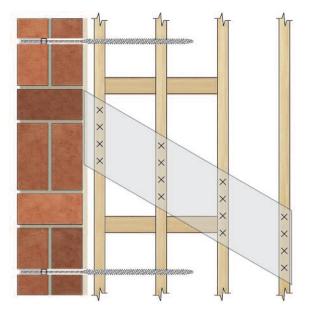

BowTies are used to stabilise or reinforce building walls by securing the masonry to the timber joists of the internal floor and roof diaphragms.They are installed externally and provide a rapid, reliable and economical solution that is fully concealed as no unsightly external plates are required.


- Quick, easy, non-disruptive external installation
- Self-tapping design no splitting of timbers
- Effective in all common wall materials
- Suitable for hardwood use
- · Easily tested for security of fixing
- Fully concealed no unsightly external plates
- For stabilising bowed external building walls
- For seismic upgrades

BowTie

• Standard helical BowTies are recommended when installing into joist ends





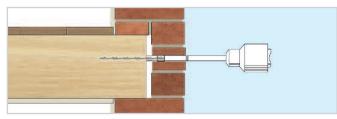
BowTie HD installed through blocker fitted between parallel joists

BowTie HD

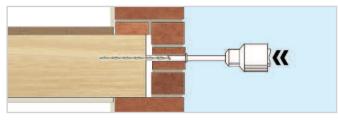
 BowTie HDs are recommended when installing into joist sides

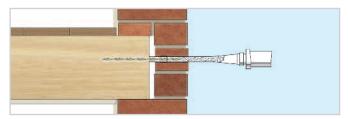
BowTie HDs into roof space joists through a solid wall. Additional timber blocking and plywood overlay may be required to create the necessary diaphragm action

BowTie


Standard BowTies are used when securing the masonry to the joist ends. Installed externally, the selftapping helical BowTie is inserted through a clearance hole and powerdriven into the joist end before being bonded into the masonry to restrain the bowing wall.

Installation Procedures


- 1. Mark the positions of the joists on the external wall.
- Drill clearance holes (normally 12mm), through the masonry only, in line with the centre of the joists.
- Clean out the hole to clear any dust or debris.
- Fit the power support tool into an SDS rotary hammer drill and insert the BowTie.
- Drive the BowTie (roto stop) into the joist to the required depth (75mm minimum).
- 6. Fit the sleeve over the tie and push it to the back of the hole in the masonry (use the support tool).
- 7. Inject Helifix EpoxyPlus EX resin into the hole to fill it completely.
- 8. Make good all holes at the surface with brick dust or matching mortar or leave ready for any decoration.


 Mark the position of the joist centre on the external wall and then drill a clearance hole (normally 12mm) through the wall (and first joist if parallel to the wall). Clean out the hole

3. Fit the plastic sleeve over the BowTie and use the support tool to push it to the back of the hole in the masonry (in the outer leaf in a cavity wall)

2. Fit the BowTie Support Tool to an SDS rotary hammer drill, insert the BowTie and drive it into joist end to the required depth – at least 75mm (or through the second joist if parallel)

 Inject EpoxyPlus EX resin to fill the hole and bond the BowTie to the masonry and then make good

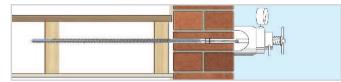
Technical Specifications

Material:	Austenitic stainless steel Grade 316 as standard (Grade 304 also available)
Diameter:	8mm and 10mm
Cross sectional area:	BowTie 8mm = 10mm ² BowTie 10mm = 15mm ²
Length:	Thickness of the wall + any cavity + sufficient to drive 75mm minimum into the joist end
Standard lengths:	Cut lengths up to 500mm
Diameter of masonry clearance hole:	l2mm
Fixing density:	As per specification
Bonding agent (near leaf only):	EpoxyPlus EX pure epoxy resin
RECOMMENDED TOOLING	
For drilling clearance holes and insertion of BowTies:	SDS rotary hammer drill 650/700w with roto stop
For injection of EpoxyPlus EX resin:	Applicator gun and injection sleeve
For load testing:	Helifix Load Test Unit

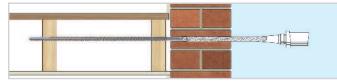
BowTie HD

The heavy duty BowTie HD is a 12mm diameter threaded bar with a self-cutting end used to secure the wall masonry to two or three parallel joists. Installed externally for minimum inconvenience, the BowTie HD is inserted through a clearance hole and then driven into the first and subsequent joists before being bonded into the masonry.

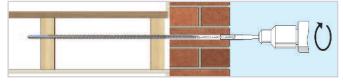
Installation Procedures


- 1. Mark the positions of the joists on the external wall.
- 2. Drill clearance holes normally 16mm through the masonry only, in line with the centre of the joists.
- Clean out the hole to clear any dust or debris.
- Fit the power support tool into an SDS rotary hammer drill and insert the BowTie HD.
- Install the BowTie HD (with hammer off) into and through the first and second joists (and third joist, if specified). When

the BowTie HD is between joists, proceed slowly and take care to avoid 'whip'.


- 6. Fit the sleeve over the tie and push it to the back of the hole in the masonry with the BowTie Injection Tube.
- 7. Inject Helifix EpoxyPlus EX resin into the hole to fill it completely.
- 8. Allow the resin to gel (normally 15 to 20 minutes).
- Make good all holes at the surface with brick dust or matching mortar or leave ready for any decoration.

I. Mark the position of the joist centre on the external wall and then drill a clearance hole (normally 16mm) through the wall. Clean out the hole



3. Test security of fixing in the joists

 Inject EpoxyPlus EX resin to fill the hole and bond the BowTie HD to the masonry, allow the resin to gel and then make good

Technical Specifications

2. Fit the BowTie HD Support Tool to an SDS rotary hammer drill, insert the BowTie HD and drive it (off hammer) into, and through, the first and second joists

4. Fit the plastic sleeve over the BowTie HD and use the support tool to push it to the back of the hole in the wall (outer leaf in a cavity wall)

Material:	Austenitic stainless steel Grade 304 (1.4301)
Diameter:	l2mm
Cross sectional area:	63mm ²
Length:	Thickness of the wall + any cavity + sufficient to drive into the second parallel joist (or third where specified)
Standard lengths:	Im and 1.5m – in packs of 5
Diameter of masonry clearance hole:	l6mm
Fixing density:	As per specification. Refer to specification and testing information on page 7
Bonding agent (near leaf only):	EpoxyPlus EX pure epoxy resin
RECOMMENDED TOOLING	
For drilling clearance holes and insertion of BowTie HDs:	SDS rotary hammer drill 650/700w with hammer-stop
For installation of BowTie HDs:	BowTie HD driver
For injection of EpoxyPlus EX resin:	Applicator gun
For load testing:	Hydrajaw Load Test Unit

Specification & Testing

BowTie specifications must take into account the engineering objectives and the physical characteristics and condition of the masonry and timber into which ties are to be installed. Anchorage capacities are dependent on these physical factors and can be expected to vary from building to building. On-site tension testing may be undertaken to confirm achievable loads. Guidance may be sought from results of independent testing listed below (Ismail 2014).

BowTie has been tested in New Zealand using local materials to establish the seismic performance of the system as a wall-diaphragm anchorage. The test programme included laboratory and on-site testing into original hardwood (Rimu), new build timbers (H3 treated pine), and historic clay brick masonry.

Characteristic maximum values are presented in Tables I and 2. Achievable anchorage capacities will depend on the physical condition of the timber and masonry present at site. Thus appropriate care should be exercised when using these values and appropriate strength reduction factors applied when designing wall-diaphragm anchorages.

Table I. Maximum achievable BowTie anchorage capacities in timber (Ismail 2014)

BowTie type	Minimum penetration when installed into joist end (mm)	Minimum penetration when installed into joist side (mm)	Condition of joist	Recommended maximum achievable anchorage capacity (kN)***
10mm standard	60	_	Good*	2.0
10mm standard	80	-	Good*	3.0
10mm standard	100	-	Good*	4.0
10mm standard	120	-	Good*	4.5
I2mm HD	-	100	Good*	9.0
I2mm HD	-	100	Excellent**	17.0
I2mm HD	_	150	Excellent**	17.0

* Hard wood such as Rimu that has no signs of excessive moisture or rot, with borer less than 5% of the total surface area.

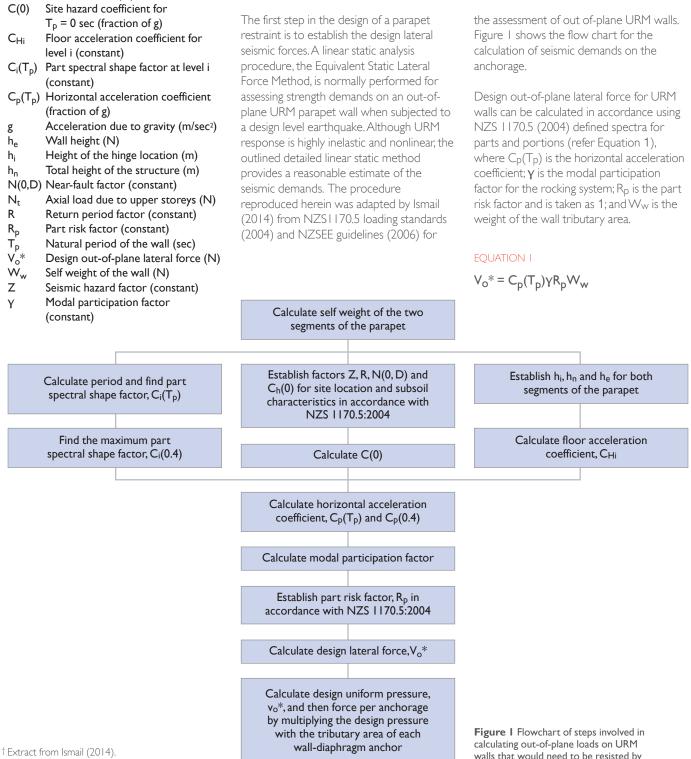
** Machine graded new H3 joists.

*** Achievable loads should be tested on site.

BowTie type	Minimum effective embedment (mm)	Minimum thickness of the wall (mm)	Min URM* sliding shear strength (kPa)	Maximum achievable anchorage capacity (kN)**
8mm or 10mm standard	70 to 210	_	-	3 to 5
I2mm HD	210	220	150	11
I2mm HD	310	330	150	13.5

* Unreinforced masonry must be free from any apparent cracking/damage, and anchors installed in bricks not mortar beds.

** Achievable loads should be tested on site.


Design Cuidance⁺

Step I

Notation

bw

Wall thickness (m)

i.e. $v_o^* = V_o^*/b_w h_e$

the wall-diaphragm anchorage

Calculate seismic demand (V_{0}^{*})

T Extract from Ismail (2014). Solid Ground Ltd, Otago, NZ

HELIFIX

8

For loads on out-of-plane URM walls supported by flexible diaphragms, a design horizontal acceleration coefficient for the level of structure that supports the wall, $C_p(T_p)$, is calculated using Equation 2. Where C(0) is the site hazard coefficient for $T_p = 0$ sec and is calculated in accordance with values suggested by NZS 1170.5 (2004) as given by Equation 3; C_{Hi} is the floor acceleration coefficient for level i; and $C_i(T_p)$ is the part spectral shape factor at level i.

EQUATION 2

 $C_{p}(T_{p}) = C(0)C_{Hi}C_{i}(T_{p})$

EQUATION 3

 $C(0) = C_{h}(0)ZRN(0,D)$

Where $C_h(0)$ is the spectral shape factor for $T_p = 0$ sec, values for different soil type profiles; Z is the seismic hazard factor and must be determined in accordance with Section 3.1.4 of NZS 1170.5 (2004); R is the return period factor and must be determined in accordance with Section 3.1.5 of NZS 1170.5 (2004) but limited such that ZR does not exceed 0.7; N(0,D) is the near-fault factor and must be determined in accordance with Section 3.1.6 of NZS 1170.5 (2004).

The floor acceleration coefficient, C_{Hi} , is calculated using either of Equations 4 to 6 as appropriate for the floor height, hi, and if two height limitations are satisfied then the smaller of the two is used. In Equations 4 to 6, hi is the floor height supporting the out-of-plane loaded URM walls and hn is the total height of the structure. The part spectral shape factor, $C_i(T_p)$, is calculated using Equation 7, where T_p is the natural period of the URM wall.

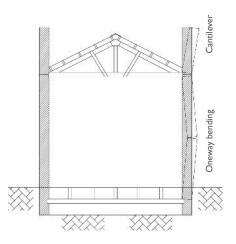
$$\begin{split} & \text{EQUATION 4} \\ & \text{C}_{\text{Hi}} = \begin{bmatrix} 1 + \frac{h_i}{6} \end{bmatrix} & \text{for all } h_i < 12 \text{ m} \\ & \text{EQUATION 5} \\ & \text{C}_{\text{Hi}} = \begin{bmatrix} 1 + 10 \frac{h_i}{h_n} \end{bmatrix} & \text{for } h_i < 0.2 \text{ h}_n \\ & \text{EQUATION 6} \\ & \text{C}_{\text{Hi}} = 3 & \text{for } h_i \geq 0.2 \text{ h}_n \\ & \text{EQUATION 7} \\ & \text{C}_i (T_p) = 2(1.75 - T_p) \text{ and } 0.5 < \text{C}_i(T_p) < 2.0 \end{split}$$

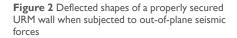
The natural period for a URM wall is established by solving the equation of motion for free vibration. Typically, URM walls can either have one way bending deformation mode when supported between two adjacent diaphragms or perform as cantilever when supported at the base only. Based on the location of hinges and the boundary conditions, equations of motion for free vibration/ rocking were solved and Equations 8 and 9 were established for continuous and cantilever boundary conditions respectively.

EQUATION 8

$$T_{p} = \sqrt{\frac{0.67h_{e}}{\left(1 + 2\frac{N_{t}}{W_{e}}\right)}}$$

EQUATION 9


$$T_{\rm p} = \left(2.67 \left[1 + \left(\frac{b_{\rm w}}{h_{\rm e}} \right)^2 \right] \right)$$


Where W_w is the self-weight of the wall, N_t is the axial load due to upper storeys, bw is the wall thickness and he is the wall height. However, for anchorage design a maximum horizontal acceleration coefficient Cp(0.4) of Tp = 0.4 sec may be used in the calculation of design out-of-plane lateral forces. Likewise for out-of-plane loaded walls having an aspect ratio of more than 10 and a small overburden weight, a maximum modal participation factor of 1.5 can be used. However, for squat walls with large overburden weights, a modal participation factor for the rocking system is calculated using Equation 10 and 11 for continuous and cantilever boundary conditions respectively.

EQUATION 10 $Y = \frac{W_w h_e^2 g}{8[0.083W_w (h_e^2 + 16b_w^2) + 2.25N_t b_w^2]}$ EQUATION 11 $Y = \frac{1.5}{\left[1 + \frac{b_w}{h_e}\right]}$

Where W_w is the self-weight of the wall, N_t is the axial load due to upper storeys, b_w is wall thickness, g is accelerations due to gravity and has a value of 9.81 m/sec², and h_e is the wall height.

For a laterally braced URM parapet wall, the portion of parapet above bracing support acts as cantilever wall and the parapet portion between the bracing support and roof anchorage acts as face loaded two-way URM wall. Accordingly, the wall-bracing anchorages are designed for a lateral force based on the tributary area for the bracing support and the calculated uniform seismic lateral force. Figure 2 shows the deflected shape of an out-of-plane loaded wall.

It must be noted that if wall-diaphragm anchorage is insufficient at each floor level then the wall would behave as a cantilever over the full height, resulting in an extremely small out-of-plane strength.

HELIFIX

$\frac{Step \ 2}{Calculate \ capacity \ of \ one \ wall-diaphragm \ anchor \ (B_n)}$

Based on the testing results, it can be inferred that the tension capacity of a Helifix BowTie HD, when installed as a walldiaphragm anchorage, is governed by either steel yielding, or a tensile breakout of masonry/timber, whichever is smaller. Steel yielding has been well studied and documented in building standards (MSJC 2005; ICC 2010) and can be estimated by using Equation 12.

EQUATION 12

$$\label{eq:Ban} \begin{split} & \varnothing B_{an} = \varnothing A_b \ 0.75 f_u \\ & \text{and for } \varnothing = 0.9, \end{split} \qquad \qquad & \varnothing B_{an} = 0.68 A_b f_u \end{split}$$

Where: $\boldsymbol{\varnothing}$ = strength reduction factor and has a recommended value of 0.9 (MSJC 2005); A_b = is the effective cross sectional area of the BowTie HD and f_u = ultimate tensile strength of BowTie HD (typical value for ASTM 304 stainless steel f_u = 520 MPa).

This results in a maximum dependable tension capacity for one 12 mm BowTie HD of 11.34 kN.Whereas the tensile breakout capacity of masonry is given by Equation 13 in MSJC standards (MSJC 2005).

EQUATION 13

Where: $A_{pt} =$ projected area on masonry surface of a right circular cone that can be calculated as $\pi {l_b}^2$ where l_b is the effective embedment length of the BowTie HD; and f_m = masonry compression strength.The MSJC standards (MSJC 2005) recommends a ø value of 0.5 for masonry breakout. After substituting the value of strength reduction factor and based on recent comprehensive New Zealand based research on URM materials (Lumantarna 2012) it is deemed that use of masonry flexural bond strength (f_{fb}) is more appropriate measure of masonry tensile breakout. Therefore, Equation 14 is recommended herein for calculating the anchorage capacity of BowTie HD when installed in New Zealand old URM:

EQUATION 14

 $\sigma B_{an} = 0.5 A_{pt} f_{fb}$

It is noted here that f_{fb} can be determined more accurately by undertaking onsite testing. Typical value of f_{fb} for pre-1930 URM buildings ranges from 0.1 - 0.4 MPa.

The shear strength of the Helifix BowTie HD can similarly be calculated using the Equations 15 and 16, corresponding to strength of the system associated to tie failure and masonry failure, respectively.

EQUATION 15

EQUATION 16

 $\phi B_{vn} = 0.5 A_{pv} f_{fb}$

Where: A_b = is the effective cross sectional area of the BowTie HD; f_y = tensile yield strength of BowTie HD stainless steel (typical value for ASTM 304 stainless steel f_y = 200 MPa); A_{pv} = projected area on masonry surface of one-half of a right circular cone that can be calculated as $0.5\pi l_{be}^2$ where l_{be} is the smaller of edge distance or effective embedment length of the BowTie HD; and f_m = masonry compression strength.

The withdrawal strength of a BowTie HD can be estimated by considering mechanical action between timber and tie bar. Equation 17 is a simplified, empirical equation developed with the experimental results and may be used to estimate the anchorage capacity of Helifix BowTie HD when installed in timber joists.

However, it is noted here that the bending strength of joists, strength of associated hardware, load path continuity, and diaphragm strengths be checked using NZS3603:Timber Structures Standards to allow transfer of additional lateral force transferred from BowTie HD to diaphragm joists.

EQUATION 17

 $ø B_{tn} = ø I_b f_{ct}$

Where: $\boldsymbol{\varnothing}$ B_{tn} = the nominal tensile anchorage capacity of BowTie HD; $\boldsymbol{\varnothing}$ = strength reduction factor, 0.9 recommended for new Raidata Pine timber joists and 0.5 for old timber joists of existing URM buildings; I_b = effective embedment length of BowTie HD; and f_{ct} = bearing strength per mm embedment of BowTie HD in timber i.e. 170 N/mm. Note that the effect of age of timber joists has been accounted for in the recommended strength reduction factors.

References

ASTM (1996). ASTM E488-96: Standard test methods for strength of anchors in concrete and masonry elements. West Conshohoken, USA, American Society for Testing and Materials International.

ICC (2010). California existing building code. Country Club Hills, US, International Code Council.

Ismail N. (2014). Seismic improvement of walldiaphragm anchorage using Helifix BowTie and BowTie HD. Dunedin, Solid Ground Limited.

Lumantarna, R. (2012). Characterisation of materials in URM buildings in New Zealand. Department of Civil and Environmental Engineering. Auckland, New Zealand, University of Auckland. Ph.D.

MSJC (2005). ACI 530-05/ASCE 5-05/TMS 402-05: Building code requirements for masonry structures. Boulder; CO, USA, The Masonry Society.

NZSEE (2006). Assessment and improvement of the structural performance of buildings in earthquakes: recommendations of a NZSEE study group on earthquake risk buildings. Wellington, NZ, New Zealand Society for Earthquake Engineering.

NZSEE (2011). Assessment and improvement of unreinforced masonry buildings for earthquake resistance. Wellington, New Zealand Society for Earthquake Engineering.

10

Design Example

Step I Demand on wall-diaphragm anchorage Bu

Let us say we have calculated uniform lateral pressure on a URM wall using NZS1170.5 parts and portions spectra and it is:

$v_0^* = 3.89 \text{ kN}/m^2$

If BowTie HD is installed every X m centre to centre spacing then we get a demand on each BowTie HD by calculating the tributary area.

$B_{u} = X \times 3.300 \times 3.89 = 12.84X \text{ kN}$

Step 2 Capacity of wall-diaphragm anchorage

For the URM wall data, found from investigation, given in Table 1 we can then estimate capacity of a Helifix BowTie HD.

Parameter	h _e m	b _w mm	t _j mm	d _j MPa	f _{fb} MPa	s _j mm	Joist notes
Value	10	210	39.4	1.4	0.18	0.09	Good condition Rimu

Where: $h_e = effective$ height of URM wall between two adjacent lines of wall-diaphragm anchors; $b_w =$ nominal thickness of URM wall; $t_j =$ width of diaphragm joists; $f_{fb} =$ masonry flexural bond strength; $d_j =$ depth of diaphragm joists; and $s_j =$ spacing of diaphragm joists.

It is also found that the diaphragm has sufficient sub-diaphragm action to transfer the total anticipated lateral force to the rest of diaphragm.

- i: Tensile strength of BowTie HD with $A_b = 60 \text{ mm}^2$ and $f_u = 520 \text{ MPa}$
 - σ B_{an} = 0.68A_bf_u
 - $\pmb{ø}$ B_an = 0.68 \times 60 \times 520 = 21,216 N or 21.21 kN
- **ii:** Masonry tensile breakout strength for 12 mm BowTie HD and EpoxyPlus EX standard installation

 $\boldsymbol{\emptyset}$ B_{an} = 0.5 A_{pt}f_{fb} where A_{pt} = π l_b²

For a typical BowTie HD installed from exterior face of the wall, $\mathsf{I}_{\mathsf{b}} = \mathsf{b}_{\mathsf{w}}$

 $A_{pt} = 3.1415 \times (210)^2 = 138540.15 \text{ mm}^2$

$$ø B_{an} = 0.5 \times 138540.15 \times 0.18$$

- $\sigma B_{an} = 12.47 \text{ kN}$
- iii: Bearing strength of BowTie HD in Timber joists
 - $\boldsymbol{ø} B_{tn} = \boldsymbol{ø} I_{b} f_{ct}$
 - $\varphi = 0.5$ (for installation in damage free good condition existing Rimu joists)
 - $f_{ct} = 170 \text{ N/mm}$ (recommended for BowTie HD based on experimental investigations)
 - $I_b = 100 \text{ mm}$ (when installed from side of two 50 mm wide joists)
 - $\phi B_{tn} = 0.5 \times 100 \times 0.17$
 - **ø** B_{tn} = 8.5 kN

Nominal anchorage capacity of BowTie HD = 8.5 kN

Step 3 Required spacing of the BowTie HD

8.5 kN = 12.84 X kN

X = 0.66199 m or say round to nearest 50 mm or 100 mm

The recommended spacing then can be 600 mm o.c.

A division of Ancon BUILDING PRODUCTS

Helifix

2/19 Nuttall DriveHillsboroughChristchurch 8022New ZealandTel: 03 376 5205Fax: 03 376 5206email: info@helifix.co.nz

246D James Fletcher Drive Otahuhu Auckland 2024 New Zealand Tel: 09 276 2236 Fax: 09 276 2237

www.helifix.co.nz

Helifix

98 Kurrajong Avenue Mount Druitt Sydney, NSW 2770 Australia Tel: 1300 66 70 71 Fax: +61 (0) 2 9675 3390 Email: sales@helifix.com.au

www.helifix.com.au